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Abstract
The shape of large on-lattice Eden clusters grown from a single seed is ruled
by the underlying lattice anisotropy. This is reflected on the linear growth
with time of the interface width (w ∼ t), in contrast with the KPZ universality
class (w ∼ t1/3) observed when the Eden model is grown on flat substrates.
We propose an extended Eden model, in which the growth probability has
a power-law dependence with the number of occupied nearest neighbours.
Large-scale simulations (N � 4 × 109 particles) were used to determine the
time evolution of w. We found that a suitable choice of the power exponent
removes the lattice-induced cluster anisotropy and provides a growth exponent
in a very good agreement with the KPZ universality class. Also, the present
model corroborates the results found in off-lattice simulations, in which the
centre-of-mass fluctuations are considered in the interface scaling analysis.

PACS numbers: 68.35.Ct, 61.43.Hv, 87.18.Hf, 87.17.Ee

1. Introduction

Since the interfaces are ubiquitous in nature, very intensive efforts are devoted to the description
of their physical properties [1]. Models where discrete unities are arranged in regular
lattices constitute very useful tools due to their easy computer implementation. However,
on-lattice growth models are frequently very sensitive to the intrinsic lattice anisotropy. Such
a dependence is evident for clusters grown from a single particle (a seed) as, for example, the
classical diffusion-limited aggregation (DLA) [2, 3] and Eden [4, 5] models. Consequently,
the interface scaling analysis in these models is much less frequent than that for the growth
from flat surfaces. However, the interface scaling in several experiments with radial symmetry
has been considered along the past decade. Examples include the dynamics of several types
of tumours [6–8], the plant callus evolution [9] and grain–grain displacement in Hele–Shaw
cells [10], among others. In this scenario, the elaboration of on-lattice models without the
undesirable effects of anisotropy becomes worthy.
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The Eden model [11] is the simplest discrete model, in which the anisotropy is determinant.
Its original version was studied on a square lattice where the sites can assume two values 1 or 0,
representing occupied or empty sites, respectively. The simulations start with a single particle
at the centre of the lattice and the growth rules are the following: at each step a peripheral site
(an occupied site with at least one empty nearest-neighbour) is chosen at random and one of
its empty nearest-neighbours is selected with equal probability and then occupied. Variants of
the Eden rules were studied, and the original version is commonly called Eden B [12].

Despite its simplicity, the Eden model produces clusters with nontrivial interface scaling
usually analysed through the interface width, also called roughness. The roughness is defined
as the root mean square deviation of the interface around its mean value

W =
[

1

N

N∑
i=1

(ri − r̄)2

]1/2

, (1)

where a set of N distances ri represents the interface and r̄ is the corresponding mean value.
The usual behaviour of the roughness is a power-law growth with the time W ∼ tβ , where
β is the growth exponent. Intensive numerical simulations of the Eden model grown from
flat substrates provide the growth exponent β = 1/3 [13–15], which corresponds to the
Kardar–Parisi–Zhang (KPZ) universality class [16]. However, the roughness of on-lattice
Eden aggregates grown from a seed is ruled by the lattice anisotropy [4, 5] and characterized
by an asymptotic growth exponent β = 1. Zabolitzky and Stauffer [4] simulated clusters
with N � 109 particles of the square lattice Eden A model and observed that the interface
width evolves in a non-trivial way. In this version, the growth sites (empty sites with at
least one occupied nearest-neighbour) are chosen at random and then occupied. For small
clusters, a good agreement with KPZ growth exponent (β ≈ 1/3) was observed, in contrast
with the linear dependence on time (β → 1) obtained for asymptotically large clusters. The
value β = 1 is associated with the cluster diamond-like shape caused by the square lattice
anisotropy [17].

Off-lattice Eden model was simulated by Wang et al [18], and the exponent β = 0.396,
a value significantly larger than the KPZ one, was found. Recently, Ferreira and Alves [19]
have shown that the exponent reported by Wang et al is due to the fluctuations of the border
centre-of-mass used as the origin for the roughness evaluation. Actually, the KPZ exponent is
obtained when an origin fixed on the initial seed is used.

In the present work, we analysed large Eden clusters (N > 4 × 109 particles) using
a procedure developed in order to remove the anisotropy of DLA clusters [20, 21]. Our
central aim is to propose a strategy for the growth of isotropic on-lattice Eden clusters without
changing their universality class, as well as to corroborate recent finds about the scaling of
off-lattice Eden clusters. The paper is outlined as follows. In section 2, the growth rules are
presented and the results for DLA model summarized. The simulation results are presented
and discussed in section 3, while some conclusions are drawn in section 4.

2. Neighbourhood-dependent growth rule

The growth of isotropic on-lattice DLA clusters was considered by Bogoyavlenskiy [20]. In
this rule, an empty site is chosen to be grown following the standard DLA model, but the
growth is implemented, or not, with probability Pk given by

P1 : P2 : P3 · · · Pk = 12 : 22 : 32 · · · k2, (2)

where k is the number of occupied nearest-neighbours of the growth site. Although the
preliminary simulations done by Bogoyavlenskiy suggested that the procedure was successful,
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(a) (b) (c)

Figure 1. Contours of large Eden B clusters (only one quadrant is shown) without noise reduction
for (a) ν = 0 (original model), (b) ν = 1.0 and (c) ν = 2.0. In all patterns, the system size
is L = 104 and the total number of particles is N ∼ 108. The dashed lines represent circles of
diameter L used to illustrate the deviations from the circular shape.

Alves and Ferreira [21] verified that it produces patterns with diagonal anisotropy at the large
scale simulation or the high noise reduction limits. The noise reduction is a tool used to
enhance the cluster anisotropy and consists of a set of counters at each growth site that are
increased by a unit every time these sites are selected for the growth. An empty site is occupied
only after its selection for M times. Also, Alves and Ferreira [21] proposed a generalized
algorithm with growth probabilities given by

Pk =
(

k

n

)ν

, (3)

where n is the lattice coordination number and ν an adjustable parameter. It was found that a
suitable choice of ν strongly reduces the cluster anisotropy. Indeed, the DLA patterns exhibit
axial and diagonal anisotropies when ν < νc and ν > νc, respectively, and an eight-fold
structure was observed for ν = νc. In the generalized Eden model, an empty site is chosen
to be grown using one of the Eden model versions and the growth is implemented, or not,
following equation (3).

3. Simulations

In this section, the square lattice case with lattice coordination n = 4 is considered. Figure 1
shows the borders of large Eden B clusters (linear size L = 104) generated without noise
reduction (M = 1) in order to illustrate the deviations from the circular shape. For the sake of
comparison, circles of diameter L centred at the seed were drawn (dashed line). It is evident
from this figure that the border is axially or diagonally stretched for small and large ν values,
respectively, whereas an approximately symmetric shape is observed when νc ≈ 1. This νc

value differs from the value νc = 0.507 ± 0.005 found for the noiseless limit as observed for
the DLA model [21], for which crossover occurs at νc = 1.395 ± 0.005 and νc = 3.4 ± 0.2
for the noiseless and M = 1 cases, respectively.

Two central points should be elucidated. The first one concerns the quantitative estimate
for νc, and the second one is the inquiry if the model belongs to the KPZ universality class
for ν = νc. In order to analyse these points, we determined the interface width evolution
considering the centre of the lattice as the origin. Since the model dynamics is restricted to
the border, we can do an analogy with the growth from flat substrates [13] and take the time
proportional to the number of peripheral particles or, equivalently, to the mean radius r̄ . We
used square lattices containing 64 000×64 000 sites and grew clusters with more than 4×109
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Figure 2. (a) Interface width as a function of the cluster mean radius for distinct ν values and (b)
mean curvature as a function of � = ν − νc . In (a), the main figure shows the curves for ν � 1

while the inset shows those for ν > 1. The dashed lines represent power law at w ∼ t
1
3 . In (b), the

solid lines are the power laws κ̄ ∼ (−�)0.57 and κ̄ ∼ �0.78 for � < 0 and � > 0, respectively. In
all data, the averages were done over 120 independent samples.

particles. We concentrate our analyses on the Eden B model because its convergence to the
asymptotic scaling is faster than that of the Eden A model [12]. For the last one, N ≈ 109

particles were necessary to enhance the diamond-like scaling (w ∼ t) [4]. In figure 2(a), the
interface width is plotted as a function of the mean radius for ν varying around ν = 1. As one
can see, the double-logarithm curves exhibit upward curvatures for both ν < 1.0 and ν > 1.0
(inset) while a power law is observed for ν ≈ 1. Also, the slopes are very close to the KPZ
growth exponent β = 1/3 when ν ≈ 1.

In order to find the null curvature point, which represents the absence of anisotropy, the
double-logarithm data are fitted by cubic polynomials P3(r) and the mean curvature is defined
by

κ̄ = 1

log10 rf − log10 ri

∫ log10 rf

log10 ri

κ(r) dr, (4)

where ri and rf are the lower and upper cutoffs of the data used in the cubic fits, respectively,
and κ(r) is the local curvature defined by

κ(r) = P ′′
3

[1 + (P ′
3)

2]3/2
. (5)

The transient behaviour for very small clusters was avoided using fit ranges from ri ≈ 46 to
rf ≈ 3 × 104. The mean curvature as a function of ν is plotted in figure 2(b). This figure
suggests an abrupt variation around the minimum of κ̄ , which occurs between ν = 1.001 and
ν = 0.999 providing the estimates νc = 1.000 ± 0.001 and β = 0.325 ± 0.017. Here, the fits
were done for r̄ > 100 and the uncertainty represents the local slope fluctuations along the
distinct parts of the curves. This growth exponent is in very good agreement with the KPZ
universality class expected for the original Eden model. Finally, these data strongly indicate
that the curvature vanishes as a power law as ν → νc.
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Figure 3. Interface width (two methods) and CM mean distance from the initial seed (inset) as
functions of the mean radius for ν = 1. The straight lines are power law fits. The averages were
done over 120 independent samples.

A central feature related to the interface scaling of round clusters is the choice of the
origin, as recently demonstrated for the off-lattice Eden model [19]. In particular, if the
width is evaluated in relation to the border centre-of-mass (CM), the growth exponent is
βCM � 2/5 [19], which differs from the KPZ exponent observed when the initial seed is
used (a fixed origin). This difference was associated to the CM fluctuations growing faster
than the interface ones. We applied this analysis to the present model with ν = νc in order
to assess the agreement with the scaling exponents obtained for the off-lattice model and
to extend the off-lattice simulations limited to 3 × 107 particles [19] to more than 4 × 109

particles. The results are shown in figure 3, where the interface width evaluated in relation
to the CM (WCM ) is compared with that in relation to the seed (W0). It is evident that the
corresponding growth exponents are distinct. Indeed, the exponents are β0 = 0.324 ± 0.017
and βCM = 0.392 ± 0.016. These results are in excellent agreement with the off-lattice Eden
model [21], reinforcing the equivalence between the universality classes of the models. The
CM mean distance from the seed exhibits two power law regimes, namely RCM ∼ r̄0.26 and
RCM ∼ r̄0.46 for small and large system sizes, respectively. Again, the asymptotic scaling
agrees with the off-lattice simulations.

The most-used version of the Eden model is that known as Eden A [12]. In this version
a growth site (an empty site neighbouring an occupied one) is chosen at random and then
occupied. In the noiseless limit, the transition from axial to diagonal anisotropy is the same
observed for the Eden B model, including the interface width minimum occurring at νc ≈ 0.51.
Without noise reduction, the criterion of null curvature gives νc = 1.72 ± 0.01 and growth
exponents in very good agreement with the off-lattice Eden model. The lower precision of the
parameter νc, in comparison with the Eden B version, is due to the slower convergence to the
asymptotic exponents and the larger νc value. The last implies a higher frequency of rejected
tentatives along the simulations.
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Figure 4. Differences between diagonal and axial growth. The dashed vertical lines indicate the
νc values for Eden A (right) and B (left) models. The averages were done over 1000 samples of
size L = 400. It is important to stress that the curves remain essentially unchanged as the system
size is varied.

The difference between the νc values for Eden A and B models can be understood
analysing the growth site neighbourhood at ν ≈ νc. Let Qk be the fraction of growth sites with
k occupied neighbours. Considering the square lattice anisotropy, one can easily conclude
that the growth sites with k = 1 and k = 3 produce axial growth, those with k = 2 produce
diagonal growth, while those with k = 4 produce an inward growth which does not contribute
to the overall anisotropy. One can suppose that if the axial growth probability exceeds the
axial one, the anisotropy rotation emerges. So, we analysed the difference between them using
the relation

δν = 4ν(Paxial − Pdiagonal) = Q1(ν) + 3νQ3(ν) − 2νQ2(ν). (6)

Figure 4 shows the curves δν against ν. As one can see, the ν = ν� values for which the
diagonal and axial growth probabilities are equal (δν = 0) are slightly larger than νc. Indeed,
we found ν� − νc � 0.02 and ν� − νc � 0.04 for the Eden A and B, respectively. Notice that
these differences are small, but clearly distinguishable since the respective deviations from
null curvature are evident as shown in figure 2(b). Thus, we conclude that the isotropic growth
of Eden clusters cannot be explained only by the counterbalance between diagonal and axial
growths.

4. Conclusions

In this work, we developed a strategy to grow on-lattice Eden clusters without the undesirable
anisotropy effects. Asymptotically large clusters generated with the original Eden model are
ruled by a diamond-like and, consequently, a growth exponent β = 1, in disagreement with
the KPZ universality class (β = 1/3) observed for the growth from a flat substrate. We
proposed an extended Eden model, in which the growth probability is proportional to a power
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law of the number of occupied nearest neighbours, Pk ∝ kν , in analogy with a procedure
developed to remove the anisotropy of DLA clusters [20, 21]. We found that the choices
ν = 1.72 ± 0.01 and ν = 1.000 ± 0.001 lead to isotropic patterns for the Eden A and B
models, respectively, preserving the KPZ universality class. Also, the extended model agrees
with off-lattice simulations, in which the centre of mass fluctuations are considered [19].

The present strategy constitutes a useful tool for modelling experiments with radial
symmetry since lattice models can be easily generalized. A very important example is the
recent report concerning the dynamics of tumours [6, 7]. These experiments indicate a
universal dynamics characterized by the Mullins-Herring universality class [22] for distinct
types of tumours. However, this idea is subject of recent controversies [23].
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